Deep Learning Počítačové Kurzy

Deep Learning Počítačové Kurzy

Lokální instruktorem vedené Deep Learning školení České republice.

Reference

★★★★★
★★★★★

Deep Learning Návrh Školení

Název školení
Doba trvání
Přehled
Název školení
Doba trvání
Přehled
14 hodin
Přehled
This course covers AI (emphasizing Machine Learning and Deep Learning) in Automotive Industry. It helps to determine which technology can be (potentially) used in multiple situation in a car: from simple automation, image recognition to autonomous decision making.
14 hodin
Přehled
TensorFlow.js is a JavaScript framework for machine learning. TensorFlow.js enables users to build and train machine learning models directly in JavaScript.

This instructor-led, live training (online or onsite) is aimed at data scientists who wish to use TensorFlow.js to identify patterns and generate predictions through machine learning models.

By the end of this training, participants will be able to:

- Build and train machine learning models with TensorFlow.js.
- Run machine learning models in the browser or under Node.js.
- Retrain pre-existing machine learning models using custom data.

Format of the Course

- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.

Course Customization Options

- To request a customized training for this course, please contact us to arrange.
14 hodin
Přehled
This classroom based training session will contain presentations and computer based examples and case study exercises to undertake with relevant neural and deep network libraries
14 hodin
Přehled
OpenCV is a library of programming functions for deciphering images with computer algorithms. OpenCV 4 is the latest OpenCV release and it provides optimized modularity, updated algorithms, and more. With OpenCV 4 and Python, users will be able to view, load, and classify images and videos for advanced image recognition.

This instructor-led, live training (online or onsite) is aimed at software engineers who wish to program in Python with OpenCV 4 for deep learning.

By the end of this training, participants will be able to:

- View, load, and classify images and videos using OpenCV 4.
- Implement deep learning in OpenCV 4 with TensorFlow and Keras.
- Run deep learning models and generate impactful reports from images and videos.

Format of the Course

- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.

Course Customization Options

- To request a customized training for this course, please contact us to arrange.
14 hodin
Přehled
OpenFace is Python and Torch based open-source, real-time facial recognition software based on Google's FaceNet research.

In this instructor-led, live training, participants will learn how to use OpenFace's components to create and deploy a sample facial recognition application.

By the end of this training, participants will be able to:

- Work with OpenFace's components, including dlib, OpenVC, Torch, and nn4 to implement face detection, alignment, and transformation
- Apply OpenFace to real-world applications such as surveillance, identity verification, virtual reality, gaming, and identifying repeat customers, etc.

Audience

- Developers
- Data scientists

Format of the course

- Part lecture, part discussion, exercises and heavy hands-on practice
7 hodin
Přehled
In this instructor-led, live training, participants will learn how to set up and use OpenNMT to carry out translation of various sample data sets. The course starts with an overview of neural networks as they apply to machine translation. Participants will carry out live exercises throughout the course to demonstrate their understanding of the concepts learned and get feedback from the instructor.

By the end of this training, participants will have the knowledge and practice needed to implement a live OpenNMT solution.

Source and target language samples will be pre-arranged per the audience's requirements.

Format of the Course

- Part lecture, part discussion, heavy hands-on practice
14 hodin
Přehled
In this instructor-led, live training, we go over the principles of neural networks and use OpenNN to implement a sample application.

Format of the course

- Lecture and discussion coupled with hands-on exercises.
21 hodin
Přehled
PaddlePaddle (PArallel Distributed Deep LEarning) is a scalable deep learning platform developed by Baidu.

In this instructor-led, live training, participants will learn how to use PaddlePaddle to enable deep learning in their product and service applications.

By the end of this training, participants will be able to:

- Set up and configure PaddlePaddle
- Set up a Convolutional Neural Network (CNN) for image recognition and object detection
- Set up a Recurrent Neural Network (RNN) for sentiment analysis
- Set up deep learning on recommendation systems to help users find answers
- Predict click-through rates (CTR), classify large-scale image sets, perform optical character recognition(OCR), rank searches, detect computer viruses, and implement a recommendation system.

Audience

- Developers
- Data scientists

Format of the course

- Part lecture, part discussion, exercises and heavy hands-on practice
21 hodin
Přehled
In this instructor-led, live training, participants will learn the most relevant and cutting-edge machine learning techniques in Python as they build a series of demo applications involving image, music, text, and financial data.

By the end of this training, participants will be able to:

- Implement machine learning algorithms and techniques for solving complex problems.
- Apply deep learning and semi-supervised learning to applications involving image, music, text, and financial data.
- Push Python algorithms to their maximum potential.
- Use libraries and packages such as NumPy and Theano.

Format of the course

- Part lecture, part discussion, exercises and heavy hands-on practice
21 hodin
Přehled
In this instructor-led, live training, participants will learn advanced techniques for Machine Learning with R as they step through the creation of a real-world application.

By the end of this training, participants will be able to:

- Understand and implement unsupervised learning techniques
- Apply clustering and classification to make predictions based on real world data.
- Visualize data to quicly gain insights, make decisions and further refine analysis.
- Improve the performance of a machine learning model using hyper-parameter tuning.
- Put a model into production for use in a larger application.
- Apply advanced machine learning techniques to answer questions involving social network data, big data, and more.

Audience

- Developers
- Analysts
- Data scientists

Format of the course

- Part lecture, part discussion, exercises and heavy hands-on practice
21 hodin
Přehled
Deep learning is a subfield of machine learning. It uses methods based on learning data representations and structures such as neural networks.

Keras is a high-level neural networks API for fast development and experimentation. It runs on top of TensorFlow, CNTK, or Theano.

This instructor-led, live training (online or onsite) is aimed at developers who wish to build a self-driving car (autonomous vehicle) using deep learning techniques.

By the end of this training, participants will be able to:

- Use computer vision techniques to identify lanes.
- Use Keras to build and train convolutional neural networks.
- Train a deep learning model to differentiate traffic signs.
- Simulate a fully autonomous car.

Format of the Course

- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.

Course Customization Options

- To request a customized training for this course, please contact us to arrange.
21 hodin
Přehled
SINGA is a general distributed deep learning platform for training big deep learning models over large datasets. It is designed with an intuitive programming model based on the layer abstraction. A variety of popular deep learning models are supported, namely feed-forward models including convolutional neural networks (CNN), energy models like restricted Boltzmann machine (RBM), and recurrent neural networks (RNN). Many built-in layers are provided for users. SINGA architecture is sufficiently flexible to run synchronous, asynchronous and hybrid training frameworks. SINGA also supports different neural net partitioning schemes to parallelize the training of large models, namely partitioning on batch dimension, feature dimension or hybrid partitioning.

Audience

This course is directed at researchers, engineers and developers seeking to utilize Apache SINGA as a deep learning framework.

After completing this course, delegates will:

- understand SINGA’s structure and deployment mechanisms
- be able to carry out installation / production environment / architecture tasks and configuration
- be able to assess code quality, perform debugging, monitoring
- be able to implement advanced production like training models, embedding terms, building graphs and logging
7 hodin
Přehled
Tensor2Tensor (T2T) is a modular, extensible library for training AI models in different tasks, using different types of training data, for example: image recognition, translation, parsing, image captioning, and speech recognition. It is maintained by the Google Brain team.

In this instructor-led, live training, participants will learn how to prepare a deep-learning model to resolve multiple tasks.

By the end of this training, participants will be able to:

- Install tensor2tensor, select a data set, and train and evaluate an AI model
- Customize a development environment using the tools and components included in Tensor2Tensor
- Create and use a single model to concurrently learn a number of tasks from multiple domains
- Use the model to learn from tasks with a large amount of training data and apply that knowledge to tasks where data is limited
- Obtain satisfactory processing results using a single GPU

Audience

- Developers
- Data scientists

Format of the course

- Part lecture, part discussion, exercises and heavy hands-on practice
21 hodin
Přehled
TensorFlow is a popular and machine learning library developed by Google for deep learning, numeric computation, and large-scale machine learning. TensorFlow 2.0, released in Jan 2019, is the newest version of TensorFlow and includes improvements in eager execution, compatibility and API consistency.

This instructor-led, live training (online or onsite) is aimed at developers and data scientists who wish to use Tensorflow 2.0 to build predictors, classifiers, generative models, neural networks and so on.

By the end of this training, participants will be able to:

- Install and configure TensorFlow 2.0.
- Understand the benefits of TensorFlow 2.0 over previous versions.
- Build deep learning models.
- Implement an advanced image classifier.
- Deploy a deep learning model to the cloud, mobile and IoT devices.

Format of the Course

- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.

Course Customization Options

- To request a customized training for this course, please contact us to arrange.
- To learn more about TensorFlow, please visit: https://www.tensorflow.org/
21 hodin
Přehled
TensorFlow Lite is an open source deep learning framework for executing models on mobile and embedded devices with limited compute and memory resources.

This instructor-led, live training (online or onsite) is aimed at developers who wish to use TensorFlow Lite to deploy deep learning models on embedded devices.

By the end of this training, participants will be able to:

- Install and configure Tensorflow Lite on an embedded device.
- Understand the concepts and components underlying TensorFlow Lite.
- Convert existing machine learning models to TensorFlow Lite format for execution on embedded devices.
- Work within the limitations of small devices and TensorFlow Lite, while learning how to expand their default capabilities.
- Deploy deep learning models on embedded devices running Linux to solve physical world problems such as recognizing images and voice, predicting patterns, and initiating movements and responses from robots and other embedded systems in the field.

Format of the Course

- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.

Course Customization Options

- To request a customized training for this course, please contact us to arrange.
21 hodin
Přehled
MXNet is a flexible, open-source Deep Learning library that is popular for research prototyping and production. Together with the high-level Gluon API interface, Apache MXNet is a powerful alternative to TensorFlow and PyTorch.

This instructor-led, live training (online or onsite) is aimed at data scientists who wish to use Apache MXNet to build and deploy a deep learning model for image recognition.

By the end of this training, participants will be able to:

- Install and configure Apache MXNet and its components.
- Understand MXNet's architecture and data structures.
- Use Apache MXNet's low-level and high-level APIs to efficiently build neural networks.
- Build a convolutional neural network for image classification.

Format of the Course

- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.

Course Customization Options

- To request a customized training for this course, please contact us to arrange.
21 hodin
Přehled
TensorFlow Lite is an open source deep learning framework for mobile devices and embedded systems.

This instructor-led, live training (online or onsite) is aimed at developers who wish to use TensorFlow Lite to develop mobile applications with deep learning capabilities.

By the end of this training, participants will be able to:

- Install and configure TensorFlow Lite.
- Understand the principles behind TensorFlow, machine learning and deep learning.
- Load TensorFlow Models onto an Android device.
- Enable deep learning and machine learning functionality such as computer vision and natural language recognition in a mobile application.

Format of the Course

- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.

Course Customization Options

- To request a customized training for this course, please contact us to arrange.
- To learn more about TensorFlow, please visit: https://www.tensorflow.org/lite/
21 hodin
Přehled
TensorFlow Lite is an open source deep learning framework for mobile devices and embedded systems.

This instructor-led, live training (online or onsite) is aimed at developers who wish to use TensorFlow Lite to develop iOS mobile applications with deep learning capabilities.

By the end of this training, participants will be able to:

- Install and configure TensorFlow Lite.
- Understand the principles behind TensorFlow and machine learning on mobile devices.
- Load TensorFlow Models onto an iOS device.
- Run an iOS application capable of detecting and classifying an object captured through the device's camera.

Format of the Course

- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.

Course Customization Options

- To request a customized training for this course, please contact us to arrange.
21 hodin
Přehled
TensorFlow Lite for Microcontrollers is a port of TensorFlow Lite designed to run machine learning models on microcontrollers and other devices with limited memory.

This instructor-led, live training (online or onsite) is aimed at engineers who wish to write, load and run machine learning models on very small embedded devices.

By the end of this training, participants will be able to:

- Install TensorFlow Lite.
- Load machine learning models onto an embedded device to enable it to detect speech, classify images, etc.
- Add AI to hardware devices without relying on network connectivity.

Format of the Course

- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.

Course Customization Options

- To request a customized training for this course, please contact us to arrange.
7 hodin
Přehled
TensorFlow Serving is a system for serving machine learning (ML) models to production.

In this instructor-led, live training (online or onsite), participants will learn how to configure and use TensorFlow Serving to deploy and manage ML models in a production environment.

By the end of this training, participants will be able to:

- Train, export and serve various TensorFlow models
- Test and deploy algorithms using a single architecture and set of APIs
- Extend TensorFlow Serving to serve other types of models beyond TensorFlow models

Format of the course

- Part lecture, part discussion, exercises and heavy hands-on practice

Course Customization Options

- To request a customized training for this course, please contact us to arrange.
21 hodin
Přehled
TensorFlow is a 2nd Generation API of Google's open source software library for Deep Learning. The system is designed to facilitate research in machine learning, and to make it quick and easy to transition from research prototype to production system.

Audience

This course is intended for engineers seeking to use TensorFlow for their Deep Learning projects

After completing this course, delegates will:

- understand TensorFlow’s structure and deployment mechanisms
- be able to carry out installation / production environment / architecture tasks and configuration
- be able to assess code quality, perform debugging, monitoring
- be able to implement advanced production like training models, building graphs and logging
28 hodin
Přehled
This course explores, with specific examples, the application of Tensor Flow to the purposes of image recognition

Audience

This course is intended for engineers seeking to utilize TensorFlow for the purposes of Image Recognition

After completing this course, delegates will be able to:

- understand TensorFlow’s structure and deployment mechanisms
- carry out installation / production environment / architecture tasks and configuration
- assess code quality, perform debugging, monitoring
- implement advanced production like training models, building graphs and logging
21 hodin
Přehled
TensorFlow Extended (TFX) is an end-to-end platform for deploying production ML pipelines.

This instructor-led, live training (online or onsite) is aimed at data scientists who wish to go from training a single ML model to deploying many ML models to production.

By the end of this training, participants will be able to:

- Install and configure TFX and supporting third-party tools.
- Use TFX to create and manage a complete ML production pipeline.
- Work with TFX components to carry out modeling, training, serving inference, and managing deployments.
- Deploy machine learning features to web applications, mobile applications, IoT devices and more.

Format of the Course

- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.

Course Customization Options

- To request a customized training for this course, please contact us to arrange.
21 hodin
Přehled
Torch is an open source machine learning library and a scientific computing framework based on the Lua programming language. It provides a development environment for numerics, machine learning, and computer vision, with a particular emphasis on deep learning and convolutional nets. It is one of the fastest and most flexible frameworks for Machine and Deep Learning and is used by companies such as Facebook, Google, Twitter, NVIDIA, AMD, Intel, and many others.

In this instructor-led, live training, we cover the principles of Torch, its unique features, and how it can be applied in real-world applications. We step through numerous hands-on exercises all throughout, demonstrating and practicing the concepts learned.

By the end of the course, participants will have a thorough understanding of Torch's underlying features and capabilities as well as its role and contribution within the AI space compared to other frameworks and libraries. Participants will have also received the necessary practice to implement Torch in their own projects.

Format of the Course

- Overview of Machine and Deep Learning
- In-class coding and integration exercises
- Test questions sprinkled along the way to check understanding
7 hodin
Přehled
The Tensor Processing Unit (TPU) is the architecture which Google has used internally for several years, and is just now becoming available for use by the general public. It includes several optimizations specifically for use in neural networks, including streamlined matrix multiplication, and 8-bit integers instead of 16-bit in order to return appropriate levels of precision.

In this instructor-led, live training, participants will learn how to take advantage of the innovations in TPU processors to maximize the performance of their own AI applications.

By the end of the training, participants will be able to:

- Train various types of neural networks on large amounts of data.
- Use TPUs to speed up the inference process by up to two orders of magnitude.
- Utilize TPUs to process intensive applications such as image search, cloud vision and photos.

Format of the course

- Part lecture, part discussion, exercises and heavy hands-on practice
35 hodin
Přehled
TensorFlow™ is an open source software library for numerical computation using data flow graphs.

SyntaxNet is a neural-network Natural Language Processing framework for TensorFlow.

Word2Vec is used for learning vector representations of words, called "word embeddings". Word2vec is a particularly computationally-efficient predictive model for learning word embeddings from raw text. It comes in two flavors, the Continuous Bag-of-Words model (CBOW) and the Skip-Gram model (Chapter 3.1 and 3.2 in Mikolov et al.).

Used in tandem, SyntaxNet and Word2Vec allows users to generate Learned Embedding models from Natural Language input.

Audience

This course is targeted at Developers and engineers who intend to work with SyntaxNet and Word2Vec models in their TensorFlow graphs.

After completing this course, delegates will:

- understand TensorFlow’s structure and deployment mechanisms
- be able to carry out installation / production environment / architecture tasks and configuration
- be able to assess code quality, perform debugging, monitoring
- be able to implement advanced production like training models, embedding terms, building graphs and logging
35 hodin
Přehled
This course begins with giving you conceptual knowledge in neural networks and generally in machine learning algorithm, deep learning (algorithms and applications).

Part-1(40%) of this training is more focus on fundamentals, but will help you choosing the right technology : TensorFlow, Caffe, Theano, DeepDrive, Keras, etc.

Part-2(20%) of this training introduces Theano - a python library that makes writing deep learning models easy.

Part-3(40%) of the training would be extensively based on Tensorflow - 2nd Generation API of Google's open source software library for Deep Learning. The examples and handson would all be made in TensorFlow.

Audience

This course is intended for engineers seeking to use TensorFlow for their Deep Learning projects

After completing this course, delegates will:

-

have a good understanding on deep neural networks(DNN), CNN and RNN

-

understand TensorFlow’s structure and deployment mechanisms

-

be able to carry out installation / production environment / architecture tasks and configuration

-

be able to assess code quality, perform debugging, monitoring

-

be able to implement advanced production like training models, building graphs and logging
14 hodin
Přehled
Video analytics refers to the technology and techniques used to process a video stream. A common application would be capturing and identifying live video events through motion detection, facial recognition, crowd and vehicle counting, etc.

This instructor-led, live training (online or onsite) is aimed at developers who wish to build hardware-accelerated object detection and tracking models to analyze streaming video data.

By the end of this training, participants will be able to:

- Install and configure the necessary development environment, software and libraries to begin developing.
- Build, train, and deploy deep learning models to analyze live video feeds.
- Identify, track, segment and predict different objects within video frames.
- Optimize object detection and tracking models.
- Deploy an intelligent video analytics (IVA) application.

Format of the Course

- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.

Course Customization Options

- To request a customized training for this course, please contact us to arrange.
28 hodin
Přehled
This course will give you knowledge in neural networks and generally in machine learning algorithm, deep learning (algorithms and applications).

This training is more focus on fundamentals, but will help you to choose the right technology : TensorFlow, Caffe, Teano, DeepDrive, Keras, etc. The examples are made in TensorFlow.
21 hodin
Přehled
This course covers AI (emphasizing Machine Learning and Deep Learning)
Víkendové Deep Learning kurzy, Večerní Deep Learning školení, Deep Learning přijímač, Deep Learning vedené školitelem, Víkendové Deep Learning školení, Večerní Deep Learning kurzy, Deep Learning koučování, Deep Learning lektor, Deep Learning školitel, Deep Learning počítačová školení, Deep Learning počítačové kurzy , Deep Learning kurzy, Deep Learning školení, Deep Learning on-site, Deep Learning uzavřená školení, Deep Learning individuální školení

Slevy Kurzů

Informační Bulletin Slev

Respektujeme soukromí vaší e-mailové adresy. Vaši adresu nebudeme předávat ani prodávat ostatním.
Vždy můžete změnit své preference nebo se úplně odhlásit.

Někteří z našich klientů

is growing fast!

We are looking to expand our presence in Czech Republic!

As a Business Development Manager you will:

  • expand business in Czech Republic
  • recruit local talent (sales, agents, trainers, consultants)
  • recruit local trainers and consultants

We offer:

  • Artificial Intelligence and Big Data systems to support your local operation
  • high-tech automation
  • continuously upgraded course catalogue and content
  • good fun in international team

If you are interested in running a high-tech, high-quality training and consulting business.

Apply now!

This site in other countries/regions