Jedná se o 4denní kurz, který zavádí AI a jeho aplikaci pomocí Python programovacího jazyka. Existuje možnost mít další den k zahájení projektu AI po dokončení tohoto kurzu.
Hlubka Reinforcement Learning se odkazuje na schopnost & quot; artificial agent", aby se naučil zkušením a chybam a výhrady. Umělný agent cílí emulaci lidského ' schopnost získat a vytvořit svůj vlastní znalost, přímo z surovéch vstupů, například vize. Aby se zjistili povzbuzení učiní, jsou používány hlubokou učenství a neurální sítě. Učení povzbuzení je jiné od vyučených strojů a nezáleží na nadzorných a nevzájemných přístupů učit.V tomto instruktorům budou účastníci naučit základní základy Hluby Reinforcement Learning, když přes vytvoření agentu Deep Learning.Až do konce tohoto školy budou účastníci umožni:
Porozumět klíčové koncepce za Hlubkou Reinforcement Learning a bude možné je rozdělit od Machine Learning Použijte pokročené algoritmy Reinforcement Learning k řešení problémů reálního světa Stvořit Deep Learning Agent
Slušenství
Vývojci Data vědeců
Formatu práce
Částní předmět, částní diskusie, vztahů a těžké rukové praxi
Tento kurz byl vytvořen pro manažery, architekty řešení, inovační úředníky, CTO, architekty softwaru a všechny, kteří se zajímají o přehled aplikované umělé inteligence a nejbližší předpověď pro jeho vývoj.
This training course is for people that would like to apply Machine Learning in practical applications.
Audience
This course is for data scientists and statisticians that have some familiarity with statistics and know how to program R (or Python or other chosen language). The emphasis of this course is on the practical aspects of data/model preparation, execution, post hoc analysis and visualization.
The purpose is to give practical applications to Machine Learning to participants interested in applying the methods at work.
Sector specific examples are used to make the training relevant to the audience.
Artificial Neural Network is a computational data model used in the development of Artificial Intelligence (AI) systems capable of performing "intelligent" tasks. Neural Networks are commonly used in Machine Learning (ML) applications, which are themselves one implementation of AI. Deep Learning is a subset of ML.
Artificial Neural Network is a computational data model used in the development of Artificial Intelligence (AI) systems capable of performing "intelligent" tasks. Neural Networks are commonly used in Machine Learning (ML) applications, which are themselves one implementation of AI. Deep Learning is a subset of ML.
Tento kurz pokrývá AI (emphasizing Machine Learning a Deep Learning) v Automotive Průmyslu. Pomáhá určit, jakou technologii lze (potenciálně) použít v několika situacích v autě: od jednoduché automatizace, rozpoznávání obrazu až po autonomní rozhodování.
This course will give you knowledge in neural networks and generally in machine learning algorithm, deep learning (algorithms and applications).
This training is more focus on fundamentals, but will help you to choose the right technology : TensorFlow, Caffe, Teano, DeepDrive, Keras, etc. The examples are made in TensorFlow.
This instructor-led, live course provides an introduction into the field of pattern recognition and machine learning. It touches on practical applications in statistics, computer science, signal processing, computer vision, data mining, and bioinformatics.
The course is interactive and includes plenty of hands-on exercises, instructor feedback, and testing of knowledge and skills acquired.
Artificial intelligence has revolutionized a large number of economic sectors (industry, medicine, communication, etc.) after having upset many scientific fields. Nevertheless, his presentation in the major media is often a fantasy, far removed from what really are the fields of Machine Learning or Deep Learning. The aim of this course is to provide engineers who already have a master's degree in computer tools (including a software programming base) an introduction to Deep Learning as well as to its various fields of specialization and therefore to the main existing network architectures today. If the mathematical bases are recalled during the course, a level of mathematics of type BAC + 2 is recommended for more comfort. It is absolutely possible to ignore the mathematical axis in order to maintain only a "system" vision, but this approach will greatly limit your understanding of the subject.
In this instructor-led, live training in České republice, participants will learn how to take advantage of the innovations in TPU processors to maximize the performance of their own AI applications.
By the end of the training, participants will be able to:
Train various types of neural networks on large amounts of data.
Use TPUs to speed up the inference process by up to two orders of magnitude.
Utilize TPUs to process intensive applications such as image search, cloud vision and photos.
Microsoft Cognitive Toolkit 2.x (previously CNTK) is an open-source, commercial-grade toolkit that trains deep learning algorithms to learn like the human brain. According to Microsoft, CNTK can be 5-10x faster than TensorFlow on recurrent networks, and 2 to 3 times faster than TensorFlow for image-related tasks.
In this instructor-led, live training, participants will learn how to use Microsoft Cognitive Toolkit to create, train and evaluate deep learning algorithms for use in commercial-grade AI applications involving multiple types of data such as data, speech, text, and images.
By the end of this training, participants will be able to:
Access CNTK as a library from within a Python, C#, or C++ program
Use CNTK as a standalone machine learning tool through its own model description language (BrainScript)
Use the CNTK model evaluation functionality from a Java program
Combine feed-forward DNNs, convolutional nets (CNNs), and recurrent networks (RNNs/LSTMs)
Scale computation capacity on CPUs, GPUs and multiple machines
Access massive datasets using existing programming languages and algorithms
Audience
Developers
Data scientists
Format of the course
Part lecture, part discussion, exercises and heavy hands-on practice
Note
If you wish to customize any part of this training, including the programming language of choice, please contact us to arrange.
PaddlePaddle (PArallel Distributed Deep LEarning) is a scalable deep learning platform developed by Baidu.
In this instructor-led, live training, participants will learn how to use PaddlePaddle to enable deep learning in their product and service applications.
By the end of this training, participants will be able to:
Set up and configure PaddlePaddle
Set up a Convolutional Neural Network (CNN) for image recognition and object detection
Set up a Recurrent Neural Network (RNN) for sentiment analysis
Set up deep learning on recommendation systems to help users find answers
Predict click-through rates (CTR), classify large-scale image sets, perform optical character recognition(OCR), rank searches, detect computer viruses, and implement a recommendation system.
Audience
Developers
Data scientists
Format of the course
Part lecture, part discussion, exercises and heavy hands-on practice
Snorkel is a system for rapidly creating, modeling, and managing training data. It focuses on accelerating the development of structured or "dark" data extraction applications for domains in which large labeled training sets are not available or easy to obtain.
In this instructor-led, live training, participants will learn techniques for extracting value from unstructured data such as text, tables, figures, and images through modeling of training data with Snorkel.
By the end of this training, participants will be able to:
Programmatically create training sets to enable the labeling of massive training sets
Train high-quality end models by first modeling noisy training sets
Use Snorkel to implement weak supervision techniques and apply data programming to weakly-supervised machine learning systems
Audience
Developers
Data scientists
Format of the course
Part lecture, part discussion, exercises and heavy hands-on practice
Encog is an open-source machine learning framework for Java and .Net.
In this instructor-led, live training, participants will learn advanced machine learning techniques for building accurate neural network predictive models.
By the end of this training, participants will be able to:
Implement different neural networks optimization techniques to resolve underfitting and overfitting
Understand and choose from a number of neural network architectures
Implement supervised feed forward and feedback networks
Audience
Developers
Analysts
Data scientists
Format of the course
Part lecture, part discussion, exercises and heavy hands-on practice
Encog is an open-source machine learning framework for Java and .Net.
In this instructor-led, live training, participants will learn how to create various neural network components using ENCOG. Real-world case studies will be discussed and machine language based solutions to these problems will be explored.
By the end of this training, participants will be able to:
Prepare data for neural networks using the normalization process
Implement feed forward networks and propagation training methodologies
Implement classification and regression tasks
Model and train neural networks using Encog's GUI based workbench
Integrate neural network support into real-world applications
Audience
Developers
Analysts
Data scientists
Format of the course
Part lecture, part discussion, exercises and heavy hands-on practice
In this instructor-led, live training, participants will learn how to use Matlab to design, build, and visualize a convolutional neural network for image recognition.
By the end of this training, participants will be able to:
Build a deep learning model
Automate data labeling
Work with models from Caffe and TensorFlow-Keras
Train data using multiple GPUs, the cloud, or clusters
Audience
Developers
Engineers
Domain experts
Format of the course
Part lecture, part discussion, exercises and heavy hands-on practice
This course begins with giving you conceptual knowledge in neural networks and generally in machine learning algorithm, deep learning (algorithms and applications).
Part-1(40%) of this training is more focus on fundamentals, but will help you choosing the right technology : TensorFlow, Caffe, Theano, DeepDrive, Keras, etc.
Part-2(20%) of this training introduces Theano - a python library that makes writing deep learning models easy.
Part-3(40%) of the training would be extensively based on Tensorflow - 2nd Generation API of Google's open source software library for Deep Learning. The examples and handson would all be made in TensorFlow.
Audience
This course is intended for engineers seeking to use TensorFlow for their Deep Learning projects
After completing this course, delegates will:
have a good understanding on deep neural networks(DNN), CNN and RNN
understand TensorFlow’s structure and deployment mechanisms
be able to carry out installation / production environment / architecture tasks and configuration
be able to assess code quality, perform debugging, monitoring
be able to implement advanced production like training models, building graphs and logging
This classroom based training session will contain presentations and computer based examples and case study exercises to undertake with relevant neural and deep network libraries
This is a 4 day course introducing AI and it's application. There is an option to have an additional day to undertake an AI project on completion of this course.
This instructor-led, live training in České republice (online or onsite) is aimed at engineers who wish to learn about the applicability of artificial intelligence to mechatronic systems.
By the end of this training, participants will be able to:
Gain an overview of artificial intelligence, machine learning, and computational intelligence.
Understand the concepts of neural networks and different learning methods.
Choose artificial intelligence approaches effectively for real-life problems.
Implement AI applications in mechatronic engineering.
Systém doporučení je proces filtrování informací, který předpovídá preference uživatele. Python lze použít k programování systémů hlubokého učení, strojového učení a neuronálních sítí, které pomáhají uživatelům objevovat nové produkty a obsah.
Tento instruktor vedený, živý výcvik (online nebo on-site) je zaměřen na vědce údajů, kteří chtějí použít Python k budování doporučených systémů.
Po ukončení tohoto tréninku budou účastníci schopni:
Vytvořte doporučené systémy na stupnici.
Použijte kolaborativní filtrování k vytvoření doporučujících systémů.
Použijte Apache Spark pro výpočet doporučených systémů na klastry.
Vytvořte rámec pro testování algoritmů doporučení s Python.
Formát kurzu
Interaktivní přednáška a diskuse.
Mnoho cvičení a praxe.
Hands-on implementace v živém laboratoři prostředí.
Možnosti personalizace kurzu
Chcete-li požádat o přizpůsobené školení pro tento kurz, kontaktujte nás, abyste uspořádali.
This instructor-led, live training in České republice (online or onsite) is aimed at researchers and developers who wish to use Chainer to build and train neural networks in Python while making the code easy to debug.
By the end of this training, participants will be able to:
Set up the necessary development environment to start developing neural network models.
Define and implement neural network models using a comprehensible source code.
Execute examples and modify existing algorithms to optimize deep learning training models while leveraging GPUs for high performance.
Business Process Re-engineering for Competitive Advantage
2023-05-01 09:30
21 hodiny
CISM - Certified Information Security Manager
2023-05-09 09:30
28 hodiny
RHEL 8 for Linux Administrators
2023-07-10 09:30
35 hodiny
Informační bulletin slev
Respektujeme soukromí vaší e-mailové adresy. Vaši adresu nebudeme předávat ani prodávat ostatním. Vždy můžete změnit své preference nebo se úplně odhlásit.
Někteří z našich klientů
is growing fast!
We are looking to expand our presence in Czech Republic!
As a Business Development Manager you will:
expand business in Czech Republic
recruit local talent (sales, agents, trainers, consultants)
recruit local trainers and consultants
We offer:
Artificial Intelligence and Big Data systems to support your local operation
high-tech automation
continuously upgraded course catalogue and content
good fun in international team
If you are interested in running a high-tech, high-quality training and consulting business.