Fine-Tuning for Retrieval-Augmented Generation (RAG) Systems Počítačový Kurz
Fine-Tuning for Retrieval-Augmented Generation (RAG) Systems je proces optimalizace, jak velké jazykové modely získávají a generují relevantní informace z externích zdrojů pro podnikové aplikace.
Toto vedení instruktorem živé školení (online nebo na místě) je určeno středně pokročilým inženýrům NLP a týmům pro správu znalostí, kteří chtějí optimalizovat RAG potrubí pro lepší výkon při odpovědích na otázky, podnikovém vyhledávání a shrnování.
Na konci tohoto školení budou účastníci schopni:
- Pochopit architekturu a pracovní postup RAG systémů.
- Fine-tuning komponentů pro získávání a generování dat specifických pro doménu.
- Hodnotit výkon RAG a aplikovat zlepšení pomocí technik PEFT.
- Nasazovat optimalizované RAG systémy pro interní nebo produkční použití.
Formát kurzu
- Interaktivní přednáška a diskuse.
- Mnoho cvičení a praxe.
- Praktické implementace v živém laboratorním prostředí.
Možnosti přizpůsobení kurzu
- Pro požadavek na přizpůsobené školení pro tento kurz nás prosím kontaktujte k uspořádání.
Návrh Školení
Úvod do generování podporovaného získáváním (RAG)
- Co je RAG a proč je důležité pro AI v podnicích
- Součásti systému RAG: získávač, generátor, úložiště dokumentů
- Porovnání s samostatnými LLM a vektorovým vyhledáváním
Nastavení RAG pipeline
- Instalace a konfigurace Haystack nebo podobných frameworků
- Ingesting dokumenty a předzpracování
- Připojení získávačů k vektorovým databázím (např. FAISS, Pinecone)
Fine-tuning získávače
- Trenování hustých získávačů pomocí dat specifických pro doménu
- Použití sentence transformers a contrastive learning
- Hodnocení kvality získávače pomocí top-k přesnosti
Fine-tuning generátora
- Výběr základních modelů (např. BART, T5, FLAN-T5)
- Instruction tuning vs. nadzorované fine-tuning
- LoRA a PEFT metody pro efektivní aktualizace
Hodnocení a optimalizace
- Metry pro hodnocení výkonu RAG (např. BLEU, EM, F1)
- Latence, kvalita získávání a snížení halucinací
- Sledování experimentů a iterativní zlepšování
Nasazení a integrace do reálného světa
- Nasazení RAG v interních vyhledávačích a chatbotech
- Zvažování bezpečnosti, přístupu k datům a řízení
- Integrace s API, dashboardy nebo portály znalostí
Studie případů a osvědčené postupy
- Použití v podnicích v oblasti financí, zdravotnictví a právnictví
- Správa doménového odchodu a aktualizací znalostní databáze
- Budoucí směry ve vyhledávací augmentaci LLM systémů
Závěr a další kroky
Požadavky
- Pochopení konceptů přirozeného jazykového zpracování (NLP)
- Zkušenosti s transformačními jazykovými modely
- Obratnost v Pythonu a základních pracovních postupech strojového učení
Cílová skupina
- Inženýři NLP
- Týmy pro správu znalostí
Veřejné školení vyžaduje minimálně 5 účastníků.
Fine-Tuning for Retrieval-Augmented Generation (RAG) Systems Počítačový Kurz - Rezervace
Fine-Tuning for Retrieval-Augmented Generation (RAG) Systems Počítačový Kurz - Dotaz
Fine-Tuning for Retrieval-Augmented Generation (RAG) Systems - Dotaz ohledně konzultace
Dotaz ohledně konzultace
Nadcházející kurzy
Související kurzy
Pokročilé Techniky Transfer Learning
14 hodinyToto živé školení vedené instruktorem v České republice (online nebo na místě) je zaměřeno na pokročilé odborníky na strojové učení, kteří si přejí osvojit si nejmodernější techniky učení s přenosem a aplikovat je na složité problémy reálného světa.
Na konci tohoto školení budou účastníci schopni:
- Pochopte pokročilé koncepty a metodiky v transferovém učení.
- Implementujte doménově specifické adaptační techniky pro předem trénované modely.
- Aplikujte neustálé učení ke správě vyvíjejících se úloh a datových sad.
- Ovládněte jemné ladění více úkolů pro zvýšení výkonu modelu napříč úkoly.
Deployování Vylepšených Modelů do Produkčního Prostředí
21 hodinyToto živé školení vedené instruktorem v České republice (online nebo na místě) je zaměřeno na pokročilé profesionály, kteří chtějí spolehlivě a efektivně nasazovat vyladěné modely.
Na konci tohoto školení budou účastníci schopni:
- Pochopte výzvy nasazení vyladěných modelů do výroby.
- Kontejnerujte a nasazujte modely pomocí nástrojů jako Docker a Kubernetes.
- Implementujte monitorování a protokolování pro nasazené modely.
- Optimalizujte modely pro latenci a škálovatelnost ve scénářích reálného světa.
Oblastní Specifické Dosazení pro Finanční Sektory
21 hodinyToto živé školení vedené instruktorem v České republice (online nebo na místě) je zaměřeno na středně pokročilé profesionály, kteří chtějí získat praktické dovednosti v přizpůsobování modelů umělé inteligence pro kritické finanční úkoly.
Na konci tohoto školení budou účastníci schopni:
- Pochopte základy jemného ladění finančních aplikací.
- Využijte předem připravené modely pro úkoly ve financích specifické pro určitou doménu.
- Aplikujte techniky pro odhalování podvodů, hodnocení rizik a generování finančního poradenství.
- Zajistěte soulad s finančními předpisy, jako je GDPR a SOX.
- Implementujte zabezpečení dat a etické postupy AI ve finančních aplikacích.
Finetuning Modelů a Velkých Jazykových Modelů (LLM)
14 hodinyToto živé školení vedené instruktorem v České republice (online nebo na místě) je zaměřeno na středně pokročilé až pokročilé profesionály, kteří chtějí přizpůsobit předem vyškolené modely pro konkrétní úkoly a datové sady.
Na konci tohoto školení budou účastníci schopni:
- Pochopit principy jemného ladění a jeho aplikace.
- Připravte datové sady pro jemné doladění předem trénovaných modelů.
- Vylaďte velké jazykové modely (LLM) pro úlohy NLP.
- Optimalizujte výkon modelu a řešte běžné problémy.
Efektivní Dosaďování s Nízorovou Adaptací (LoRA)
14 hodinyToto živé školení vedené instruktorem v České republice (online nebo na místě) je zaměřeno na středně pokročilé vývojáře a odborníky na umělou inteligenci, kteří chtějí implementovat strategie jemného ladění pro velké modely bez potřeby rozsáhlých výpočetních zdrojů.
Na konci tohoto školení budou účastníci schopni:
- Pochopte principy adaptace na nízké hodnocení (LoRA).
- Implementujte LoRA pro efektivní jemné doladění velkých modelů.
- Optimalizujte jemné ladění pro prostředí s omezenými zdroji.
- Vyhodnoťte a nasaďte modely vyladěné LoRA pro praktické aplikace.
Posouzení Multimodálních Modelů
28 hodinyToto živé školení vedené instruktorem v České republice (online nebo na místě) je zaměřeno na pokročilé profesionály, kteří chtějí zvládnout dolaďování multimodálního modelu pro inovativní řešení AI.
Na konci tohoto školení budou účastníci schopni:
- Pochopte architekturu multimodálních modelů jako CLIP a Flamingo.
- Efektivně připravujte a předzpracujte multimodální datové sady.
- Vylaďte multimodální modely pro konkrétní úlohy.
- Optimalizujte modely pro aplikace a výkon v reálném světě.
Fine-Tuning pro Přirozený Jazykový Zpracování (NLP)
21 hodinyToto živé školení vedené instruktorem v České republice (online nebo na místě) je zaměřeno na středně pokročilé profesionály, kteří chtějí zlepšit své NLP projekty prostřednictvím efektivního dolaďování předem vyškolených jazykových modelů.
Na konci tohoto školení budou účastníci schopni:
- Pochopte základy jemného ladění úkolů NLP.
- Vylaďte předem připravené modely jako GPT, BERT a T5 pro konkrétní aplikace NLP.
- Optimalizujte hyperparametry pro lepší výkon modelu.
- Vyhodnoťte a nasaďte vyladěné modely ve scénářích reálného světa.
Fine-Tuning DeepSeek LLM pro Vytvoření Specializovaných AI Modelů
21 hodinyTento instruktorův živý vzdělávací kurz (online nebo na místním zařízení) je určen pro pokročilé odborníky v oblasti umělé inteligence, specialisty v oblasti strojového učení a vývojáře, kteří chtějí finetunovat modely DeepSeek LLM na vytvoření specializovaných AI aplikací přizpůsobených specifickým odvětvím, doménám nebo potřebám podniku.
Po absolvování tohoto kurzu budou účastníci schopni:
- Porozumět architektuře a schopnostem DeepSeek modelů, včetně DeepSeek-R1 a DeepSeek-V3.
- Připravovat datasety a předzpracovávat data pro finetuning.
- Finetunovat modely DeepSeek LLM pro doménově specifické aplikace.
- Optimalizovat a efektivně nasazovat finetunované modely.
Fine-Tuning Velké Jazykové Modely pomocí QLoRA
14 hodinyTento instruktorův vedený živý kurz v České republice (online nebo na místě) je určen pro středně pokročilé a pokročilé inženýry strojového učení, vývojáře AI a analytiky dat, kteří chtějí zjistit, jak použít QLoRA pro efektivní přizpůsobení velkých modelů konkrétním úkolům a vlastním požadavkům.
Konci tohoto kurzu budou účastníci schopni:
- Pochopit teorii za QLoRA a kvantizační techniky pro LLMs.
- Implementovat QLoRA při přizpůsobení velkých jazykových modelů pro oblast-specifické aplikace.
- Optymalizovat výkon přizpůsobení na omezených výpočetních zdrojích pomocí kvantizačních metod.
- Efektivně nasadit a vyhodnotit přizpůsobené modely ve skutečném světě.
Fine-Tuning s Reinforcement Learning z lidského zpětné vazby (RLHF)
14 hodinyTento instruktorův kurz v reálném čase v České republice (online nebo na místě) je určen pro pokročilé inženýry strojového učení a AI výzkumníky, kteří chtějí použít RLHF ke kalibrování velkých AI modelů s cílem dosáhnout lepšího výkonu, bezpečnosti a shody.
Koncem tohoto kurzu budou účastníci schopni:
- Pochopit teoretické základy RLHF a proč jsou důležité ve moderním vývoji AI.
- Implementovat odměnové modely na základě lidské zpětné vazby, které řídí procesy reforčního učení.
- Kalibrovat velké jazykové modely pomocí technik RLHF tak, aby výstupy odpovídaly lidem předkládaným preferencím.
- Použít nejlepší praktiky pro škálování pracovních postupů RLHF pro produkční AI systémy.
Optimalizace Velkých Modelů pro Ekonomické Fine-Tuning
21 hodinyToto živé školení vedené instruktorem v České republice (online nebo na místě) je zaměřeno na pokročilé profesionály, kteří chtějí ovládat techniky pro optimalizaci velkých modelů pro nákladově efektivní dolaďování v reálných scénářích.
Na konci tohoto školení budou účastníci schopni:
- Pochopte výzvy jemného ladění velkých modelů.
- Aplikujte distribuované tréninkové techniky na velké modely.
- Využijte kvantizaci a prořezávání modelu pro efektivitu.
- Optimalizujte využití hardwaru pro úkoly jemného ladění.
- Efektivně nasazujte vyladěné modely v produkčním prostředí.
Inženýrství vyzv a ošetření s malým počtem ukázek
14 hodinyToto živé školení vedené instruktorem v České republice (online nebo na místě) je zaměřeno na středně pokročilé profesionály, kteří chtějí využít sílu rychlého inženýrství a několikanásobného učení k optimalizaci výkonu LLM pro aplikace v reálném světě.
Na konci tohoto školení budou účastníci schopni:
- Pochopte principy rychlého inženýrství a několikanásobného učení.
- Navrhněte efektivní výzvy pro různé úkoly NLP.
- Využijte techniky několika snímků k přizpůsobení LLM s minimem dat.
- Optimalizujte výkon LLM pro praktické aplikace.
Parametrům eficientní techniky Fine-Tuning (PEFT) pro velké modely jazyka (LLM)
14 hodinyTento instruktorův kurz (online nebo na místě) je určen pro středně pokročilé datové vědce a inženýry AI, kteří chtějí efektivněji a ekonomicky fine-tunovat velké jazykové modely pomocí metod jako jsou LoRA, Adapter Tuning a Prefix Tuning.
Koncem tohoto kurzu budou účastníci schopni:
- Pochopit teorii za přístupy k parametricky efektivnímu fine-tuningu.
- Implementovat LoRA, Adapter Tuning a Prefix Tuning pomocí Hugging Face PEFT.
- Srovnávat výkonnostní a nákladové obchodní podmínky metod PEFT s plným fine-tuningem.
- Nasazovat a škálovat fine-tunované LLMs s sníženými požadavky na výpočetní prostředky a úložiště.
Úvod do přenosu učení
14 hodinyToto živé školení vedené instruktorem v České republice (online nebo na místě) je zaměřeno na začátečníky až středně pokročilé profesionály v oblasti strojového učení, kteří chtějí porozumět a aplikovat techniky přenosu učení ke zlepšení efektivity a výkonu v projektech AI.
Na konci tohoto školení budou účastníci schopni:
- Pochopte základní koncepty a výhody transferového učení.
- Prozkoumejte oblíbené předem vyškolené modely a jejich aplikace.
- Proveďte jemné doladění předtrénovaných modelů pro vlastní úkoly.
- Aplikujte přenosové učení k řešení reálných problémů v NLP a počítačovém vidění.
Řešení problémů při finetuningu
14 hodinyToto živé školení vedené instruktorem v České republice (online nebo na místě) je zaměřeno na pokročilé profesionály, kteří si přejí zdokonalit své dovednosti v diagnostice a řešení problémů s dolaďováním modelů strojového učení.
Na konci tohoto školení budou účastníci schopni:
- Diagnostikujte problémy, jako je nadměrné vybavení, nedostatečné vybavení a nevyváženost dat.
- Implementujte strategie pro zlepšení konvergence modelů.
- Optimalizujte jemné doladění potrubí pro lepší výkon.
- Ladit tréninkové procesy pomocí praktických nástrojů a technik.