Fine-Tuning Legal AI Models: Contract Review and Legal Research Počítačový Kurz
Fine-tuning is the process of adapting pre-trained NLP models to specialized domains such as law and legal documentation.
This instructor-led, live training (online or onsite) is aimed at intermediate-level legal tech engineers and AI developers who wish to fine-tune language models for tasks like contract analysis, clause extraction, and automated legal research in legal service environments.
By the end of this training, participants will be able to:
- Prepare and clean legal documents for fine-tuning NLP models.
- Apply fine-tuning strategies to improve model accuracy on legal tasks.
- Deploy models to assist with contract review, classification, and research.
- Ensure compliance, auditability, and traceability of AI outputs in legal contexts.
Format of the Course
- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
Návrh Školení
Introduction to Legal AI and Fine-Tuning
- Overview of legal tech and its evolution
- Applications of NLP in law: contracts, case law, compliance
- Benefits and limitations of using pre-trained models in legal domains
Preparing Legal Data for Fine-Tuning
- Types of legal documents: contracts, terms, case law, statutes
- Text cleaning, segmentation, and clause extraction
- Annotating legal data for supervised learning
Fine-Tuning NLP Models for Legal Tasks
- Choosing a pre-trained model: BERT, LegalBERT, RoBERTa, etc.
- Setting up a fine-tuning pipeline with Hugging Face
- Training on legal classification and extraction tasks
Contract Review Automation
- Detecting clause types and obligations
- Highlighting risk terms and compliance issues
- Summarizing long contracts for quick review
Legal Research Assistance with AI
- Information retrieval and ranking for case law
- Question answering on statutes and regulations
- Building a legal document chatbot or assistant
Evaluation and Interpretability
- Metrics: F1, precision, recall, accuracy
- Model explainability in high-stakes legal contexts
- Tools for clause-level confidence scoring and auditing
Deployment and Integration
- Embedding models in legal research platforms or review tools
- APIs and interface considerations for law firm use
- Maintaining privacy, version control, and update workflows
Summary and Next Steps
Požadavky
- An understanding of natural language processing fundamentals
- Experience with Python and machine learning libraries such as Hugging Face Transformers
- Familiarity with legal texts and basic legal document structures
Audience
- Legal tech engineers
- AI developers for law firms
- Machine learning professionals working with legal data
Open Training Courses require 5+ participants.
Fine-Tuning Legal AI Models: Contract Review and Legal Research Počítačový Kurz - Booking
Fine-Tuning Legal AI Models: Contract Review and Legal Research Počítačový Kurz - Enquiry
Fine-Tuning Legal AI Models: Contract Review and Legal Research - Consultancy Enquiry
Consultancy Enquiry
Upcoming Courses
Související kurzy
Advanced Techniques in Transfer Learning
14 hodinyToto živé školení vedené instruktorem v České republice (online nebo na místě) je zaměřeno na pokročilé odborníky na strojové učení, kteří si přejí osvojit si nejmodernější techniky učení s přenosem a aplikovat je na složité problémy reálného světa.
Na konci tohoto školení budou účastníci schopni:
- Pochopte pokročilé koncepty a metodiky v transferovém učení.
- Implementujte doménově specifické adaptační techniky pro předem trénované modely.
- Aplikujte neustálé učení ke správě vyvíjejících se úloh a datových sad.
- Ovládněte jemné ladění více úkolů pro zvýšení výkonu modelu napříč úkoly.
Continual Learning and Model Update Strategies for Fine-Tuned Models
14 hodinyTento instruktorův kurz (online nebo na místě) je určen pokročilým inženýrům pro udržování AI a profesionálům v oblasti MLOps, kteří chtějí implementovat robustní trvající učení (continual learning) potrubí a efektivní strategie aktualizací pro nasazené, zefinánované modely.
Koncem tohoto kurzu budou účastníci schopni:
- Nakreslit a implementovat pracovní postupy trvajícího učení pro nasazené modely.
- Zmírnit katastrofické zapomínání prostřednictvím správného školení a správy paměti.
- Automatizovat monitorování a spouštěče aktualizací na základě odchylky modelu nebo změn dat.
- Integrace strategií aktualizací modelů do stávajících CI/CD a MLOps potrubí.
Deploying Fine-Tuned Models in Production
21 hodinyToto živé školení vedené instruktorem v České republice (online nebo na místě) je zaměřeno na pokročilé profesionály, kteří chtějí spolehlivě a efektivně nasazovat vyladěné modely.
Na konci tohoto školení budou účastníci schopni:
- Pochopte výzvy nasazení vyladěných modelů do výroby.
- Kontejnerujte a nasazujte modely pomocí nástrojů jako Docker a Kubernetes.
- Implementujte monitorování a protokolování pro nasazené modely.
- Optimalizujte modely pro latenci a škálovatelnost ve scénářích reálného světa.
Domain-Specific Fine-Tuning for Finance
21 hodinyToto živé školení vedené instruktorem v České republice (online nebo na místě) je zaměřeno na středně pokročilé profesionály, kteří chtějí získat praktické dovednosti v přizpůsobování modelů umělé inteligence pro kritické finanční úkoly.
Na konci tohoto školení budou účastníci schopni:
- Pochopte základy jemného ladění finančních aplikací.
- Využijte předem připravené modely pro úkoly ve financích specifické pro určitou doménu.
- Aplikujte techniky pro odhalování podvodů, hodnocení rizik a generování finančního poradenství.
- Zajistěte soulad s finančními předpisy, jako je GDPR a SOX.
- Implementujte zabezpečení dat a etické postupy AI ve finančních aplikacích.
Fine-Tuning Models and Large Language Models (LLMs)
14 hodinyToto živé školení vedené instruktorem v České republice (online nebo na místě) je zaměřeno na středně pokročilé až pokročilé profesionály, kteří chtějí přizpůsobit předem vyškolené modely pro konkrétní úkoly a datové sady.
Na konci tohoto školení budou účastníci schopni:
- Pochopit principy jemného ladění a jeho aplikace.
- Připravte datové sady pro jemné doladění předem trénovaných modelů.
- Vylaďte velké jazykové modely (LLM) pro úlohy NLP.
- Optimalizujte výkon modelu a řešte běžné problémy.
Efficient Fine-Tuning with Low-Rank Adaptation (LoRA)
14 hodinyToto živé školení vedené instruktorem v České republice (online nebo na místě) je zaměřeno na středně pokročilé vývojáře a odborníky na umělou inteligenci, kteří chtějí implementovat strategie jemného ladění pro velké modely bez potřeby rozsáhlých výpočetních zdrojů.
Na konci tohoto školení budou účastníci schopni:
- Pochopte principy adaptace na nízké hodnocení (LoRA).
- Implementujte LoRA pro efektivní jemné doladění velkých modelů.
- Optimalizujte jemné ladění pro prostředí s omezenými zdroji.
- Vyhodnoťte a nasaďte modely vyladěné LoRA pro praktické aplikace.
Fine-Tuning Multimodal Models
28 hodinyToto živé školení vedené instruktorem v České republice (online nebo na místě) je zaměřeno na pokročilé profesionály, kteří chtějí zvládnout dolaďování multimodálního modelu pro inovativní řešení AI.
Na konci tohoto školení budou účastníci schopni:
- Pochopte architekturu multimodálních modelů jako CLIP a Flamingo.
- Efektivně připravujte a předzpracujte multimodální datové sady.
- Vylaďte multimodální modely pro konkrétní úlohy.
- Optimalizujte modely pro aplikace a výkon v reálném světě.
Fine-Tuning for Natural Language Processing (NLP)
21 hodinyToto živé školení vedené instruktorem v České republice (online nebo na místě) je zaměřeno na středně pokročilé profesionály, kteří chtějí zlepšit své NLP projekty prostřednictvím efektivního dolaďování předem vyškolených jazykových modelů.
Na konci tohoto školení budou účastníci schopni:
- Pochopte základy jemného ladění úkolů NLP.
- Vylaďte předem připravené modely jako GPT, BERT a T5 pro konkrétní aplikace NLP.
- Optimalizujte hyperparametry pro lepší výkon modelu.
- Vyhodnoťte a nasaďte vyladěné modely ve scénářích reálného světa.
Fine-Tuning AI for Financial Services: Risk Prediction and Fraud Detection
14 hodinyThis instructor-led, live training in České republice (online or onsite) is aimed at advanced-level data scientists and AI engineers in the financial sector who wish to fine-tune models for applications such as credit scoring, fraud detection, and risk modeling using domain-specific financial data.
By the end of this training, participants will be able to:
- Fine-tune AI models on financial datasets for improved fraud and risk prediction.
- Apply techniques such as transfer learning, LoRA, and regularization to enhance model efficiency.
- Integrate financial compliance considerations into the AI modeling workflow.
- Deploy fine-tuned models for production use in financial services platforms.
Fine-Tuning AI for Healthcare: Medical Diagnosis and Predictive Analytics
14 hodinyThis instructor-led, live training in České republice (online or onsite) is aimed at intermediate-level to advanced-level medical AI developers and data scientists who wish to fine-tune models for clinical diagnosis, disease prediction, and patient outcome forecasting using structured and unstructured medical data.
By the end of this training, participants will be able to:
- Fine-tune AI models on healthcare datasets including EMRs, imaging, and time-series data.
- Apply transfer learning, domain adaptation, and model compression in medical contexts.
- Address privacy, bias, and regulatory compliance in model development.
- Deploy and monitor fine-tuned models in real-world healthcare environments.
Fine-Tuning DeepSeek LLM for Custom AI Models
21 hodinyToto živé školení vedené instruktorem v České republice (online nebo na místě) je zaměřeno na pokročilé výzkumníky umělé inteligence, inženýry strojového učení a vývojáře, kteří chtějí vyladit DeepSeek modely LLM tak, aby vytvořily specializované aplikace umělé inteligence přizpůsobené konkrétním odvětví, domény nebo obchodní potřeby.
Na konci tohoto školení budou účastníci schopni:
- Pochopte architekturu a možnosti modelů DeepSeek, včetně DeepSeek-R1 a DeepSeek-V3.
- Připravte datové sady a předzpracujte data pro jemné doladění.
- Dolaďte DeepSeek LLM pro aplikace specifické pro doménu.
- Optimalizujte a nasazujte efektivně vyladěné modely.
Fine-Tuning Defense AI for Autonomous Systems and Surveillance
14 hodinyThis instructor-led, live training in České republice (online or onsite) is aimed at advanced-level defense AI engineers and military technology developers who wish to fine-tune deep learning models for use in autonomous vehicles, drones, and surveillance systems while meeting stringent security and reliability standards.
By the end of this training, participants will be able to:
- Fine-tune computer vision and sensor fusion models for surveillance and targeting tasks.
- Adapt autonomous AI systems to changing environments and mission profiles.
- Implement robust validation and fail-safe mechanisms in model pipelines.
- Ensure alignment with defense-specific compliance, safety, and security standards.
Fine-Tuning Large Language Models Using QLoRA
14 hodinyTento instruktorův vedený živý kurz v České republice (online nebo na místě) je určen pro středně pokročilé a pokročilé inženýry strojového učení, vývojáře AI a analytiky dat, kteří chtějí zjistit, jak použít QLoRA pro efektivní přizpůsobení velkých modelů konkrétním úkolům a vlastním požadavkům.
Konci tohoto kurzu budou účastníci schopni:
- Pochopit teorii za QLoRA a kvantizační techniky pro LLMs.
- Implementovat QLoRA při přizpůsobení velkých jazykových modelů pro oblast-specifické aplikace.
- Optymalizovat výkon přizpůsobení na omezených výpočetních zdrojích pomocí kvantizačních metod.
- Efektivně nasadit a vyhodnotit přizpůsobené modely ve skutečném světě.
Fine-Tuning Lightweight Models for Edge AI Deployment
14 hodinyTento instruktorův kurz v reálném čase (online nebo na místě) je určen pro středně pokročilé vývojáře zařazených do zanořeného umělého rozumu a odborníky na hraniční výpočty, kteří chtějí upravit a optimalizovat lehké modely umělého rozumu pro nasazení na zařízeních s omezenými zdroji.
Koncem tohoto kurzu budou účastníci schopni:
- Vybrat a upravit předtrénované modely vhodné pro nasazení na hranici.
- Použít kvantizaci, ořezávání a další kompresní techniky k snížení velikosti modelu a latence.
- Zlepšit modely pomocí přenosového učení pro specifický výkon úkolu.
- Nasadit optimalizované modely na skutečných platformách hraničních zařízení.
Fine-Tuning Open-Source LLMs (LLaMA, Mistral, Qwen, etc.)
14 hodinyTento instruktorův vedený živý kurz v České republice (online nebo na místě) je určen pro středně pokročilé odborníky v oblasti strojového učení a vývojáře umělé inteligence, kteří chtějí upravit a nasadit modely s otevřenými váhy jako jsou LLaMA, Mistral a Qwen pro specifické podnikové nebo interní aplikace.
Koncem tohoto kurzu budou účastníci schopni:
- Pochopit ekosystém a rozdíly mezi otevřenými zdrojovými kódy LLMs.
- Připravit datasety a konfigurace pro upravování modelů jako jsou LLaMA, Mistral a Qwen.
- Provádět procesy upravování pomocí Hugging Face Transformers a PEFT.
- Vyhodnotit, uložit a nasadit upravené modely v bezpečných prostředích.