Online nebo na místě, instruktorem vedené živé kurzy Stream Processing demonstrují prostřednictvím interaktivní diskuse a praktického procvičování základů a pokročilých témat Stream Processing. Školení Stream Processing je dostupné jako „online živé školení“ nebo „na místě živé školení“. Online živé školení (neboli "vzdálené živé školení") se provádí prostřednictvím interaktivní vzdálené plochy . Živá školení na místě lze provádět lokálně v prostorách zákazníka v České republice nebo ve firemních školicích střediscích NobleProg v České republice. NobleProg -- Váš místní poskytovatel školení
Machine Translated
Kurzy v pracovní den probíhají mezi @start_time a @end_time
Apache Samza is an open-source near-realtime, asynchronous computational framework for stream processing. It uses Apache Kafka for messaging, and Apache Hadoop YARN for fault tolerance, processor isolation, security, and resource management.
This instructor-led, live training introduces the principles behind messaging systems and distributed stream processing, while walking participants through the creation of a sample Samza-based project and job execution.
By the end of this training, participants will be able to:
Use Samza to simplify the code needed to produce and consume messages.
Decouple the handling of messages from an application.
Use Samza to implement near-realtime asynchronous computation.
Use stream processing to provide a higher level of abstraction over messaging systems.
Audience
Developers
Format of the course
Part lecture, part discussion, exercises and heavy hands-on practice
Tigon is an open-source, real-time, low-latency, high-throughput, native YARN, stream processing framework that sits on top of HDFS and HBase for persistence. Tigon applications address use cases such as network intrusion detection and analytics, social media market analysis, location analytics, and real-time recommendations to users.
This instructor-led, live training introduces Tigon's approach to blending real-time and batch processing as it walks participants through the creation a sample application.
By the end of this training, participants will be able to:
Create powerful, stream processing applications for handling large volumes of data
Process stream sources such as Twitter and Webserver Logs
Use Tigon for rapid joining, filtering, and aggregating of streams
Audience
Developers
Format of the course
Part lecture, part discussion, exercises and heavy hands-on practice
In this instructor-led, live training, participants will learn the core concepts behind MapR Stream Architecture as they develop a real-time streaming application.
By the end of this training, participants will be able to build producer and consumer applications for real-time stream data procesing.
Audience
Developers
Administrators
Format of the course
Part lecture, part discussion, exercises and heavy hands-on practice
Note
To request a customized training for this course, please contact us to arrange.
Kafka Streams is a client-side library for building applications and microservices whose data is passed to and from a Kafka messaging system. Traditionally, Apache Kafka has relied on Apache Spark or Apache Storm to process data between message producers and consumers. By calling the Kafka Streams API from within an application, data can be processed directly within Kafka, bypassing the need for sending the data to a separate cluster for processing.
In this instructor-led, live training, participants will learn how to integrate Kafka Streams into a set of sample Java applications that pass data to and from Apache Kafka for stream processing.
By the end of this training, participants will be able to:
Understand Kafka Streams features and advantages over other stream processing frameworks
Process stream data directly within a Kafka cluster
Write a Java or Scala application or microservice that integrates with Kafka and Kafka Streams
Write concise code that transforms input Kafka topics into output Kafka topics
Build, package and deploy the application
Audience
Developers
Format of the course
Part lecture, part discussion, exercises and heavy hands-on practice
Notes
To request a customized training for this course, please contact us to arrange
In this instructor-led, live training in České republice (onsite or remote), participants will learn how to set up and integrate different Stream Processing frameworks with existing big data storage systems and related software applications and microservices.
By the end of this training, participants will be able to:
Install and configure different Stream Processing frameworks, such as Spark Streaming and Kafka Streaming.
Understand and select the most appropriate framework for the job.
Process of data continuously, concurrently, and in a record-by-record fashion.
Integrate Stream Processing solutions with existing databases, data warehouses, data lakes, etc.
Integrate the most appropriate stream processing library with enterprise applications and microservices.
This instructor-led, live training (online or onsite) is aimed at engineers who wish to use Confluent (a distribution of Kafka) to build and manage a real-time data processing platform for their applications.
By the end of this training, participants will be able to:
Install and configure Confluent Platform.
Use Confluent's management tools and services to run Kafka more easily.
Store and process incoming stream data.
Optimize and manage Kafka clusters.
Secure data streams.
Format of the Course
Interactive lecture and discussion.
Lots of exercises and practice.
Hands-on implementation in a live-lab environment.
Course Customization Options
This course is based on the open source version of Confluent: Confluent Open Source.
To request a customized training for this course, please contact us to arrange.
Apache Kafka je platformou pro zpracování toku s otevřeným zdrojem, která poskytuje rychlou, spolehlivou a nízkou frekvencí platformu pro zpracování analýzy dat v reálném čase. Apache Kafka lze integrovat s dostupnými programovacími jazyky, jako je Python.
Tento instruktor vedený, živý trénink (online nebo on-site) je zaměřen na inženýry dat, vědce dat a programátory, kteří chtějí používat Apache Kafka funkce v přenosu dat s Python.
Do konce tohoto tréninku budou účastníci schopni používat Apache Kafka k monitorování a správě podmínek v průběžných datových toků pomocí Python programování.
Formát kurzu
Interaktivní přednáška a diskuse.
Mnoho cvičení a praxe.
Hands-on implementace v živém laboratoři prostředí.
Možnosti personalizace kurzu
Chcete-li požádat o přizpůsobené školení pro tento kurz, kontaktujte nás, abyste uspořádali.
This instructor-led, live training in České republice introduces the principles and approaches behind distributed stream and batch data processing, and walks participants through the creation of a real-time, data streaming application in Apache Flink.
In this instructor-led, live training in České republice (onsite or remote), participants will learn how to deploy and manage Apache NiFi in a live lab environment.
By the end of this training, participants will be able to:
Install and configure Apachi NiFi.
Source, transform and manage data from disparate, distributed data sources, including databases and big data lakes.
In this instructor-led, live training in České republice, participants will learn the fundamentals of flow-based programming as they develop a number of demo extensions, components and processors using Apache NiFi.
By the end of this training, participants will be able to:
Understand NiFi's architecture and dataflow concepts.
Develop extensions using NiFi and third-party APIs.
Custom develop their own Apache Nifi processor.
Ingest and process real-time data from disparate and uncommon file formats and data sources.
Apache Storm je distribuovaný počítačový motor v reálném čase používaný k usnadnění obchodní inteligence v reálném čase. Umožňuje aplikacím spolehlivě zpracovávat neomezené toky dat (např. zpracování toku)
"Storm je pro zpracování v reálném čase, co Hadoop je pro zpracování batchů!"
V tomto živém tréninku vedeném instruktorem se účastníci dozví, jak nainstalovat a konfigurovat Apache Storm, a pak vyvíjet a rozvíjet Apache Storm aplikaci pro zpracování velkých dat v reálném čase.
Některé z témat zahrnutých v tomto tréninku zahrnují:
Apache Storm v souvislosti s Hadoop
Práce s neomezenými údaji
Kontinuální výpočet
Analýza v reálném čase
Distribuované zpracování RPC a ETL
Požádejte o tento kurz nyní!
publikum
Software a vývojáři ETL
Mainframe profesionál
Data vědci
Big Data analytici
[ 0 ] profesionálové
Formát kurzu
Částečná přednáška, částečná diskuse, cvičení a těžká praxe
Apache Apex is a YARN-native platform that unifies stream and batch processing. It processes big data-in-motion in a way that is scalable, performant, fault-tolerant, stateful, secure, distributed, and easily operable.
This instructor-led, live training introduces Apache Apex's unified stream processing architecture, and walks participants through the creation of a distributed application using Apex on Hadoop.
By the end of this training, participants will be able to:
Understand data processing pipeline concepts such as connectors for sources and sinks, common data transformations, etc.
Build, scale and optimize an Apex application
Process real-time data streams reliably and with minimum latency
Use Apex Core and the Apex Malhar library to enable rapid application development
Use the Apex API to write and re-use existing Java code
Integrate Apex into other applications as a processing engine
Tune, test and scale Apex applications
Format of the Course
Interactive lecture and discussion.
Lots of exercises and practice.
Hands-on implementation in a live-lab environment.
Course Customization Options
To request a customized training for this course, please contact us to arrange.
Apache Beam is an open source, unified programming model for defining and executing parallel data processing pipelines. It's power lies in its ability to run both batch and streaming pipelines, with execution being carried out by one of Beam's supported distributed processing back-ends: Apache Apex, Apache Flink, Apache Spark, and Google Cloud Dataflow. Apache Beam is useful for ETL (Extract, Transform, and Load) tasks such as moving data between different storage media and data sources, transforming data into a more desirable format, and loading data onto a new system.
In this instructor-led, live training (onsite or remote), participants will learn how to implement the Apache Beam SDKs in a Java or Python application that defines a data processing pipeline for decomposing a big data set into smaller chunks for independent, parallel processing.
By the end of this training, participants will be able to:
Install and configure Apache Beam.
Use a single programming model to carry out both batch and stream processing from withing their Java or Python application.
Execute pipelines across multiple environments.
Format of the Course
Part lecture, part discussion, exercises and heavy hands-on practice
Note
This course will be available Scala in the future. Please contact us to arrange.
Apache Ignite is an in-memory computing platform that sits between the application and data layer to improve speed, scale, and availability.
In this instructor-led, live training, participants will learn the principles behind persistent and pure in-memory storage as they step through the creation of a sample in-memory computing project.
By the end of this training, participants will be able to:
Use Ignite for in-memory, on-disk persistence as well as a purely distributed in-memory database.
Achieve persistence without syncing data back to a relational database.
Use Ignite to carry out SQL and distributed joins.
Improve performance by moving data closer to the CPU, using RAM as a storage.
Spread data sets across a cluster to achieve horizontal scalability.
Integrate Ignite with RDBMS, NoSQL, Hadoop and machine learning processors.
Format of the Course
Interactive lecture and discussion.
Lots of exercises and practice.
Hands-on implementation in a live-lab environment.
Course Customization Options
To request a customized training for this course, please contact us to arrange.
This instructor-led, live training in České republice (online or onsite) is aimed at developers who wish to implement Apache Kafka stream processing without writing code.
By the end of this training, participants will be able to:
Install and configure Confluent KSQL.
Set up a stream processing pipeline using only SQL commands (no Java or Python coding).
Carry out data filtering, transformations, aggregations, joins, windowing, and sessionization entirely in SQL.
Design and deploy interactive, continuous queries for streaming ETL and real-time analytics.
Apache Spark Streaming je skalovatelný open source streamový systém, který umožňuje uživatelům zpracovávat data v reálném čase z podporovaných zdrojů. Spark Streaming Umožňuje nesprávně tolerující zpracování datových toků.
Tento výcvik vedený instruktorem (online nebo on-site) je zaměřen na inženýry dat, vědce dat a programátory, kteří chtějí používat funkce Spark Streaming při zpracování a analýze dat v reálném čase.
Na konci tohoto tréninku budou účastníci schopni používat Spark Streaming k zpracování živých datových toků pro použití v databázích, souborových systémech a živých panelech.
Formát kurzu
Interaktivní přednáška a diskuse.
Mnoho cvičení a praxe.
Hands-on implementace v živém laboratoři prostředí.
Možnosti personalizace kurzu
Chcete-li požádat o přizpůsobené školení pro tento kurz, kontaktujte nás, abyste uspořádali.
Respektujeme soukromí vaší e-mailové adresy. Vaši adresu nebudeme předávat ani prodávat ostatním. Vždy můžete změnit své preference nebo se úplně odhlásit.
Někteří z našich klientů
is growing fast!
We are looking to expand our presence in Czech Republic!
As a Business Development Manager you will:
expand business in Czech Republic
recruit local talent (sales, agents, trainers, consultants)
recruit local trainers and consultants
We offer:
Artificial Intelligence and Big Data systems to support your local operation
high-tech automation
continuously upgraded course catalogue and content
good fun in international team
If you are interested in running a high-tech, high-quality training and consulting business.