AWS Cloud9 for Data Science Training Course
AWS Cloud9 offers a robust environment for data science, enabling users to build, test, and deploy data models using cloud-based tools. This course guides participants through setting up and managing a data science environment in AWS Cloud9, with a focus on integrating with AWS services for data storage, processing, and machine learning.
This instructor-led, live training (online or onsite) is aimed at intermediate-level data scientists and analysts who wish to use AWS Cloud9 for streamlined data science workflows.
By the end of this training, participants will be able to:
- Set up a data science environment in AWS Cloud9.
- Perform data analysis using Python, R, and Jupyter Notebook in Cloud9.
- Integrate AWS Cloud9 with AWS data services like S3, RDS, and Redshift.
- Utilize AWS Cloud9 for machine learning model development and deployment.
- Optimize cloud-based workflows for data analysis and processing.
Format of the Course
- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
Course Outline
Introduction to AWS Cloud9 for Data Science
- Overview of AWS Cloud9 features for data science
- Setting up a data science environment in AWS Cloud9
- Configuring Cloud9 for Python, R, and Jupyter Notebook
Data Ingestion and Preparation
- Importing and cleaning data from various sources
- Using AWS S3 for data storage and access
- Preprocessing data for analysis and modeling
Data Analysis in AWS Cloud9
- Exploratory data analysis using Python and R
- Working with Pandas, NumPy, and data visualization libraries
- Statistical analysis and hypothesis testing in Cloud9
Machine Learning Model Development
- Building machine learning models using Scikit-learn and TensorFlow
- Training and evaluating models in AWS Cloud9
- Using SageMaker with Cloud9 for large-scale model development
Database Integration and Management
- Integrating AWS RDS and Redshift with AWS Cloud9
- Querying large datasets using SQL and Python
- Handling big data with AWS services
Model Deployment and Optimization
- Deploying machine learning models using AWS Lambda
- Using AWS CloudFormation to automate deployment
- Optimizing data pipelines for performance and cost-efficiency
Collaborative Development and Security
- Collaborating on data science projects in Cloud9
- Using Git for version control and project management
- Security best practices for data and models in AWS Cloud9
Summary and Next Steps
Requirements
- Basic understanding of data science concepts
- Familiarity with Python programming
- Experience with cloud environments and AWS services
Audience
- Data scientists
- Data analysts
- Machine learning engineers
Open Training Courses require 5+ participants.
AWS Cloud9 for Data Science Training Course - Booking
AWS Cloud9 for Data Science Training Course - Enquiry
AWS Cloud9 for Data Science - Consultancy Enquiry
Consultancy Enquiry
Testimonials (3)
Understanding big data beter
Shaune Dennis - Vodacom
Course - Big Data Business Intelligence for Telecom and Communication Service Providers
All good, nothing to improve
Ievgen Vinchyk - GE Medical Systems Polska Sp. Z O.O.
Course - AWS Lambda for Developers
IOT applications
Palaniswamy Suresh Kumar - Makers' Academy
Course - Industrial Training IoT (Internet of Things) with Raspberry PI and AWS IoT Core 「4 Hours Remote」
Upcoming Courses
Related Courses
Advanced Amazon Web Services (AWS) CloudFormation
7 HoursThis instructor-led, live training in Czech Republic (online or onsite) is aimed at cloud engineers and developers who wish to use CloudFormation to manage infrastructure resources within the AWS ecosystem.
By the end of this training, participants will be able to:
- Implement CloudFormation templates to automate infrastructure management.
- Integrate existing AWS resources into CloudFormation.
- Use StackSets to manage stacks across multiple accounts and regions.
Anaconda Ecosystem for Data Scientists
14 HoursThis instructor-led, live training in Czech Republic (online or onsite) is aimed at data scientists who wish to use the Anaconda ecosystem to capture, manage, and deploy packages and data analysis workflows in a single platform.
By the end of this training, participants will be able to:
- Install and configure Anaconda components and libraries.
- Understand the core concepts, features, and benefits of Anaconda.
- Manage packages, environments, and channels using Anaconda Navigator.
- Use Conda, R, and Python packages for data science and machine learning.
- Get to know some practical use cases and techniques for managing multiple data environments.
Amazon DynamoDB for Developers
14 HoursThis instructor-led, live training in Czech Republic (online or onsite) is aimed at developers who wish to integrate a DynamoDB NoSQL database into a web application hosted on AWS.
By the end of this training, participants will be able to:
- Set up the necessary development environment to start integrating data into DynamoDB.
- Integrate DynamoDB into web applications and mobile applications.
- Move data in AWS with AWS services.
- Implement operations with AWS DAX.
AWS IoT Core
14 HoursThis instructor-led, live training in Czech Republic (onsite or remote) is aimed at engineers who wish to deploy and manage IoT devices on AWS.
By the end of this training, participants will be able to build an IoT platform that includes the deployment and management of a backend, gateway, and devices on top of AWS.
Amazon Web Services (AWS) IoT Greengrass
21 HoursThis instructor-led, live training in Czech Republic (online or onsite) is aimed at developers who wish to install, configure, and manage AWS IoT Greengrass capabilities to create applications for various devices.
By the end of this training, participants will be able to use AWS IoT Greengrass to build, deploy, manage, secure, and monitor applications on intelligent devices.
AWS Lambda for Developers
14 HoursThis instructor-led, live training in Czech Republic (onsite or remote) is aimed at developers who wish to use AWS Lambda to build and deploy services and applications to the cloud, without needing to worry about provisioning the execution environment (servers, VMs and containers, availability, scalability, storage, etc.).
By the end of this training, participants will be able to:
- Configure AWS Lambda to execute a function.
- Understand FaaS (Functions as a Service) and the advantages of serverless development.
- Build, upload and execute AWS Lambda functions.
- Integrate Lambda functions with different event sources.
- Package, deploy, monitor and troubleshoot Lambda based applications.
Big Data Business Intelligence for Telecom and Communication Service Providers
35 HoursOverview
Communications service providers (CSP) are facing pressure to reduce costs and maximize average revenue per user (ARPU), while ensuring an excellent customer experience, but data volumes keep growing. Global mobile data traffic will grow at a compound annual growth rate (CAGR) of 78 percent to 2016, reaching 10.8 exabytes per month.
Meanwhile, CSPs are generating large volumes of data, including call detail records (CDR), network data and customer data. Companies that fully exploit this data gain a competitive edge. According to a recent survey by The Economist Intelligence Unit, companies that use data-directed decision-making enjoy a 5-6% boost in productivity. Yet 53% of companies leverage only half of their valuable data, and one-fourth of respondents noted that vast quantities of useful data go untapped. The data volumes are so high that manual analysis is impossible, and most legacy software systems can’t keep up, resulting in valuable data being discarded or ignored.
With Big Data & Analytics’ high-speed, scalable big data software, CSPs can mine all their data for better decision making in less time. Different Big Data products and techniques provide an end-to-end software platform for collecting, preparing, analyzing and presenting insights from big data. Application areas include network performance monitoring, fraud detection, customer churn detection and credit risk analysis. Big Data & Analytics products scale to handle terabytes of data but implementation of such tools need new kind of cloud based database system like Hadoop or massive scale parallel computing processor ( KPU etc.)
This course work on Big Data BI for Telco covers all the emerging new areas in which CSPs are investing for productivity gain and opening up new business revenue stream. The course will provide a complete 360 degree over view of Big Data BI in Telco so that decision makers and managers can have a very wide and comprehensive overview of possibilities of Big Data BI in Telco for productivity and revenue gain.
Course objectives
Main objective of the course is to introduce new Big Data business intelligence techniques in 4 sectors of Telecom Business (Marketing/Sales, Network Operation, Financial operation and Customer Relation Management). Students will be introduced to following:
- Introduction to Big Data-what is 4Vs (volume, velocity, variety and veracity) in Big Data- Generation, extraction and management from Telco perspective
- How Big Data analytic differs from legacy data analytic
- In-house justification of Big Data -Telco perspective
- Introduction to Hadoop Ecosystem- familiarity with all Hadoop tools like Hive, Pig, SPARC –when and how they are used to solve Big Data problem
- How Big Data is extracted to analyze for analytics tool-how Business Analysis’s can reduce their pain points of collection and analysis of data through integrated Hadoop dashboard approach
- Basic introduction of Insight analytics, visualization analytics and predictive analytics for Telco
- Customer Churn analytic and Big Data-how Big Data analytic can reduce customer churn and customer dissatisfaction in Telco-case studies
- Network failure and service failure analytics from Network meta-data and IPDR
- Financial analysis-fraud, wastage and ROI estimation from sales and operational data
- Customer acquisition problem-Target marketing, customer segmentation and cross-sale from sales data
- Introduction and summary of all Big Data analytic products and where they fit into Telco analytic space
- Conclusion-how to take step-by-step approach to introduce Big Data Business Intelligence in your organization
Target Audience
- Network operation, Financial Managers, CRM managers and top IT managers in Telco CIO office.
- Business Analysts in Telco
- CFO office managers/analysts
- Operational managers
- QA managers
AWS CloudFormation
7 HoursThis instructor-led, live training in Czech Republic (online or onsite) is aimed at engineers who wish to use AWS CloudFormation to automate the process of managing AWS cloud infrastructure.
By the end of this training, participants will be able to:
- Enable AWS services to get started managing infrastructure.
- Understand and apply the principle of "infrastructure as code".
- Improve quality and lower the costs of deploying infrastructure.
- Write AWS CloudFormation Templates using YAML.
Mastering DevOps with AWS Cloud9
21 HoursThis instructor-led, live training in Czech Republic (online or onsite) is aimed at advanced-level professionals who wish to deepen their understanding of DevOps practices and streamline development processes using AWS Cloud9.
By the end of this training, participants will be able to:
- Set up and configure AWS Cloud9 for DevOps workflows.
- Implement continuous integration and continuous delivery (CI/CD) pipelines.
- Automate testing, monitoring, and deployment processes using AWS Cloud9.
- Integrate AWS services such as Lambda, EC2, and S3 into DevOps workflows.
- Utilize source control systems like GitHub or GitLab within AWS Cloud9.
Developing Serverless Applications on AWS Cloud9
14 HoursThis instructor-led, live training in Czech Republic (online or onsite) is aimed at intermediate-level professionals who wish to learn how to effectively build, deploy, and maintain serverless applications on AWS Cloud9 and AWS Lambda.
By the end of this training, participants will be able to:
- Understand the fundamentals of serverless architecture.
- Set up AWS Cloud9 for serverless application development.
- Develop, test, and deploy serverless applications using AWS Lambda.
- Integrate AWS Lambda with other AWS services such as API Gateway and S3.
- Optimize serverless applications for performance and cost efficiency.
Industrial Training IoT (Internet of Things) with Raspberry PI and AWS IoT Core 「4 Hours Remote」
4 HoursSummery:
- Basics of IoT architecture and functions
- “Things”, “Sensors”, Internet and the mapping between business functions of IoT
- Essential of all IoT software components- hardware, firmware, middleware, cloud and mobile app
- IoT functions- Fleet manager, Data visualization, SaaS based FM and DV, alert/alarm, sensor onboarding, “thing” onboarding, geo-fencing
- Basics of IoT device communication with cloud with MQTT.
- Connecting IoT devices to AWS with MQTT (AWS IoT Core).
- Connecting AWS IoT core with AWS Lambda function for computation and data storage.
- Connecting Raspberry PI with AWS IoT core and simple data communication.
- Alerts and events
- Sensor calibration
Industrial Training IoT (Internet of Things) with Raspberry PI and AWS IoT Core 「8 Hours Remote」
8 HoursSummary:
- Basics of IoT architecture and functions
- “Things”, “Sensors”, Internet and the mapping between business functions of IoT
- Essential of all IoT software components- hardware, firmware, middleware, cloud and mobile app
- IoT functions- Fleet manager, Data visualization, SaaS based FM and DV, alert/alarm, sensor onboarding, “thing” onboarding, geo-fencing
- Basics of IoT device communication with cloud with MQTT.
- Connecting IoT devices to AWS with MQTT (AWS IoT Core).
- Connecting AWS IoT core with AWS Lambda function for computation and data storage using DynamoDB.
- Connecting Raspberry PI with AWS IoT core and simple data communication.
- Hands on with Raspberry PI and AWS IoT Core to build a smart device.
- Sensor data visualization and communication with web interface.
Kaggle
14 HoursThis instructor-led, live training in Czech Republic (online or onsite) is aimed at data scientists and developers who wish to learn and build their careers in Data Science using Kaggle.
By the end of this training, participants will be able to:
- Learn about data science and machine learning.
- Explore data analytics.
- Learn about Kaggle and how it works.
Accelerating Python Pandas Workflows with Modin
14 HoursThis instructor-led, live training in Czech Republic (online or onsite) is aimed at data scientists and developers who wish to use Modin to build and implement parallel computations with Pandas for faster data analysis.
By the end of this training, participants will be able to:
- Set up the necessary environment to start developing Pandas workflows at scale with Modin.
- Understand the features, architecture, and advantages of Modin.
- Know the differences between Modin, Dask, and Ray.
- Perform Pandas operations faster with Modin.
- Implement the entire Pandas API and functions.
GPU Data Science with NVIDIA RAPIDS
14 HoursThis instructor-led, live training in Czech Republic (online or onsite) is aimed at data scientists and developers who wish to use RAPIDS to build GPU-accelerated data pipelines, workflows, and visualizations, applying machine learning algorithms, such as XGBoost, cuML, etc.
By the end of this training, participants will be able to:
- Set up the necessary development environment to build data models with NVIDIA RAPIDS.
- Understand the features, components, and advantages of RAPIDS.
- Leverage GPUs to accelerate end-to-end data and analytics pipelines.
- Implement GPU-accelerated data preparation and ETL with cuDF and Apache Arrow.
- Learn how to perform machine learning tasks with XGBoost and cuML algorithms.
- Build data visualizations and execute graph analysis with cuXfilter and cuGraph.